

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [547]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
A PRE-FLOW PUSH ALGORITHM TO GENERALIZED MAXIMUM FLOW

PROBLEM
A. Anto Kinsley *, B. Uma Maheswari

Department of Mathematics, St. Xavier’s college (Autonomous), Palayamkottai.

Research scholar, Department of Mathematics, St. Xavier’s college (Autonomous), Palayamkottai.

ABSTRACT
This work presents an algorithm for the generalized maximum flow problem. First, we describe the traditional

maximum flow problem. Pre-flow Push algorithms work in a more localized manner than the Ford-Fulkerson method.

These algorithms maintain at all stages a feasible pre-flow that has a saturated cut. The pre-flow is changed step by

step until it does satisfy flow conservation. The resulting flow then has a saturated cut so is a maximum flow. In

generalized networks, each arc has a positive multiplier (u, v) called a gain factor, associated with it, representing the

fraction of flow that remains when it is sent along that arc. The generalized maximum flow problem is identical to the

traditional maximum flow problem, except that it can also model network with “leak” flow.

KEYWORDS: Network, distance labeling, excess flow, capacity, maximum flow, gain function.

 INTRODUCTION
For graph theoretic terminology, we refer to Bundy and Murthy [1]. The network flow problem [2] is an example of

a beautiful theoretical subject that has many important applications. In this paper, the ideas of Goldberg- Trajan [4]

pre flow and distance labeling on a network will be fashioned into an algorithm for the maximum flow problem and

it is called as pre-flow push algorithm. It is based on the local routine that operates on the excess flow at a single

vertex.

The generalized maximum flow problem is a natural generalization of the traditional maximum flow problem. In

traditional networks, there is an implicit assumption that flow is conserved on every arc. This assumption may be

violated if water leak as it is pumped through a pipeline. Many applications are described in [3].

In a generalized network, a fixed percentage of the flow is lost when it is sent along an arc. Specially, each arc (u, v)

has an associated gain factor (u, v). When f (u, v) units of flow enter into the arc (u, v) at node u then (u, v) f (u, v)

arrive at v. As the example in Figure 1 illustrates, if 80 units of flow are sent into an arc (u, v) with gain factor 3/4,

then 60 units reach node w; if these 60 units are then sent through an arc (v, x) with gain factor 1/2, then 30 units arrive

at x.

Definition 1.1

A network is an edge-capacitated directed graph with two distinguished vertices, source s and sinks t. We can think

of the edges of G as conduits for a fluid, and the capacity of each edge being carrying capacity of the edge for that

fluid. The fluid flows in the network from the source to the sink, in such a way that the amount of fluid in each edge

does not exceed the capacity of that edge. A flow in a network X is a function f that assigns to each edge e of the

network a real number f(e), in such a way that

(1) For each edge e we have o ≤ f (e) ≤ cap (e) and

http://www.ijesrt.com/

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [548]

(2) For each vertex v other than the source and the sink, it is true that

   



veTermveInit

efef
)()(

_______________ (1)

The condition (1) is a flow conservation condition. It states that the outflow from v is equal to the inflow to v for all

vertices v other than s and t.

Definition 1.2

A network with edge capacities ca b and f = {f a b} is an assignment of flow to the edges of N. Then f is a pre-flow if at

each internal node v ≠ s, t, we have

   





vet

e

veh

e ff . Thus we assume that, at each internal node, the flow in is at

least as large as the flow out. The excess flow at v is defined by

  
   

 
 u

vu

w

wv

vet

e

veh

e ffffvex

Of course, if ex (v) = 0 for all internal nodes v then f is a flow. We call f a feasible pre-flow if, in addition,

 0 f e  C e. Our general strategy is to start with an initial pre-flow then successively modify the flows on various

edges so that at all times the pre-flow is feasible and moves steadily toward satisfying flow conservation.

Definition 1.3

A distance labeling  assigns to each node v an integer  (v). The conditions that makes  (v) a distance labeling are

that:  (s) = n = |V |,  (t) = 0 and if edge a b is available for a push then  (a)   (b) + 1. So we insist that, whenever

f a b < c a b or f b a > 0 we have  (a)   (b) + 1.

Generalized Maximum Flow problem

Definition 2.1

The generalized maximum flow problem is a generalized network G = (V, E, t, c,,e) where V is an n-set of nodes, E

is an m-set of directed arc, vt is a distinguished node called the sink, 0:  REc is a capacity function,

0:  RE is a gain function, and 0:  RVe is an initial excess function. A residual arc is an arc with

positive capacity. A flow generating cycle is a cycle whose gain is more than one.

Definition 2.2

A generalized pseudo flow is a function REf : that satisfies the capacity constraints

   wvuwvf ,,  For all   Ewv , and the anti symmetry constraints      vwfvwwvf ,,,  For all

  Ewv , . The residual excess of f at node v is      
 





Ewv

f wvfveve
,

, i.e., the initial excess minus the net

flow out of v. If e f (v) is positive (negative) we say that f has residual excess (deficit) at node v. A generalized flow

is a generalized pseudo flow that has no residual deficits, but it is allowed to have residual excesses. A proper

generalized flow is a flow which does not generate any additional residual excess, except possibly at the sink. We note

that a flow can be converted into a proper flow, by removing flow on useless paths and cycles. Let OPT (G) denote

the maximum possible value of any flow in network G. A flow f is optimal in network G if | f | = OPT (G) and -

optimal if | g | ≥ (1 - ) OPT (G). The (approximate) generalized maximum flow problem is to find a (-) optimal flow.

Optimality conditions

An augmenting path is a residual path from a node with residual excess into the sink. A generalized augmenting path

(GAP) is a residual flow-generating cycle, together with a residual path from a node on this cycle to the sink. By

sending flow along augmenting paths or GAPs we increase the net flow into the sink.

Theorem 2.3

http://www.ijesrt.com/

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [549]

Suppose that network N has a feasible pre-flow P and a distance labeling. Then there is a cut (S, T) with every edge

of (S) saturated and every edge of (T) empty.

Proof: Refer [4]

This theorem says that any feasible pre-flow with a distance labeling has a saturated cut. For the special case of a flow,

the Max-Flow Min-Cut Theorem then gives the following corollary which establishes the stopping condition for the

pre-flow push algorithms.

Theorem 2.4: If a feasible flow F has a distance labeling then F is a maximum flow. □

PRE -FLOW PUSH ALGORITHM

We have a network N with a pre flow f and a distance labeling. At each internal node v there is some excess flow ex

(v). We denote the capacity of the arc a b by cab while the pre flow on this edge is f a b. We call an edge a b an available

edge if either a b or b a is an arc of N either f a b < c a b or f b a > 0 or both. Thus an available edge is a candidate for a

push operation. Note that the availability of an edge depends on the pre flow; as the pre flow is changed a given edge

a b may gain or lose this status. The maximum amount that can be pushed along an available edge a b is

baabab ffcc
ab

 . The key to controlling the pushing of flow is to define an available edge a b to be admissible

if and only if (a) = (b) + 1. The pre flow push algorithm allows pushes only on admissible edges.

The Pre flow Push algorithm is based on the following local routine that operates on the excess flow at a single vertex.

Process (v)

1. Start with an active node v (so ex (v) > 0).

2. Pick an admissible edge v a.

3. Push min {ex (v), vac


} additional flow along v a.

4. Repeat Steps 2 and 3 until either ex (v) = 0 or there are no more admissible edges.

5. If ex (v) > 0 and there are no admissible then re label v as follows. Set

 (v) = min {(a) + 1| v a is an available edge}

 This will produce at least one admissible edge; return to Step 2. Note that since ex (v) > 0 this excess flow

 must have arrived on some arcs that are now available for a push.

6. If ex (v) = 0 then v is no longer active and we are finished processing v.

Pre-flow Push Algorithm

1. Initialize: define an initial pre-flow and Distance labeling on N

2. While an active node v remains: Process (v).

3. The pre-flow is now a maximum flow.

The above algorithm can be applied to find the maximum in flow pushed through any flow network. Consider the

following network for finding the maximum flow applied.

http://www.ijesrt.com/

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [550]

Step 1

1. Initialize the pre-flow and labeling

In the above figure, the first variable represent the node, the second value is the distance labeling of each node

and the third value is the excess flow of that node.

 2. Re label A: (A) = 1

 3. Push on AE: PAE = 1, ex (A) = 4

 4. Re label A: (A) = 2

 5. Push on AD: PAD = 2, ex (A) = 2

 6. Re label A: (A) = 3

 7. Push on AF: PAF = 2, ex (A) = 0.

Step 2

 8. Re label B: (B) = 1

 9. Push on BC: PBC = 4, ex (B) = 2

 10. Re label B: (B) = 2

 11. Push on B t: PB t = 4, ex (B) = 0.

Step 3

 12. Re label E: (E) = 1

 13. Push on E t: PE t = 1, ex (E) = 0.

 14. Re label D: (D) = 1

 15. Push on D t: PD t = 1, ex (D) = 1

 16. Re label D: (D) = 4

 17. Push on DA: PDA=1, ex (D) = 0.

Step 4

 18. Re label A: (A) = 10

 19. Push on AS: PSA = 1, ex (A) = 0.

 20. Re label F: (F) = 1

 21. Push on Ft: PF t = 1, ex (F) = 0.

 22. Re label C: (C) = 1

 23. Push on CG: PCG = 1, ex (C) = 2

 24. Re label C: (C) = 2

 25. Push on Ct: PC t = 1, ex (C) = 1.

 26. Re label C: (C) = 3

 27. Push on Ct: PC t = 1, ex (C) = 0.

(G, 0, 0) (S, 9, 0)

(D, 0, 0)

(B, 0, 6) (C, 0, 0)

(A, 0, 5)
 (t, 0, 0)

5,5

(F, 0, 0)

2

4

(E, 0, 0)

6, 6

2

2

1

1
1

2

2

1

2
1

2

(G, 0, 0) (S, 9, 0)

(D, 0, 2)

(B, 0, 6) (C, 0, 0)

(A, 3, 0)
 (t, 0,0)

5, 5

(F, 0, 2)

2

4

(E, 0, 1)

6, 6

2, 2

2

1

1
1

2

2

1

2
1, 1

2, 2

(G,0, 0) (S, 9, 0)

(D, 0, 2)

(B, 2, 0) (C, 0, 4)

(A, 0, 3) (t, 0,2)

5, 5

(F, 0, 2)

2, 2

4, 4

(E, 0, 1)

6, 6

2, 2

2

1

1
1

2

2

1

2
1, 1

2,2

http://www.ijesrt.com/

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [551]

 28. Re label G: (G) = 1

 29. Push on G t: PG t = 1, ex (G) = 1

 30. Re label G: (G) = 2

 31. Push on CG: PCG = 1, ex (G) = 0.

 32. Re label C: (C) = 4

 33. Push on CB: PCB = 1, ex (B) = 1

 34. Re label B: (B) = 10

 35. Push on BS: PBS = 1, ex (B) = 0.

 36. Stop: No active vertices remain

  Maximum in flow = 9.

The algorithm sends flow along all gain augmenting paths simultaneously, using a maximum flow computation. The

algorithm is given below.

Algorithm 3.1:

Procedure max out flow (X: network; f: flow; Gain function RE : : max flow: real)

{Finds maximum flow in a given network}

Max -out-flow value: = 0

Set 10,1   where

While there exists an augmenting path do

Max-out-flow value: = max-out-flow value +  Where      yx 

End {while}.

TO FIND THE MAXIMUM OUT FLOW
Consider the network with gain function

In this network we have GAP:

F1: S – B – t, S – B – C - t, is increased by one in 2 ways and S – B – C – G - t,

 F2: S – A – E - t, S – A – D - t and S – A – F – t.

Let x and y be the gain function of the corresponding paths F1 and F2.

In F1, The gain function of the path S – B - t can be expressed as

,833.0
6

5
x

x
x 

4.0*833.0
5

2
*

6

5

6

5
x

xx


In the path S – B – C - t, the expression becomes

,833.0
6

5
x

x
x 

5.0*833.0
3

2
*

4

3
*833.0

3

1

3

1
*

4

3
*

6

5

6

5
xx

xx











(G, 2, 0) (s,9,0)

(D, 4, 0)

(B, 10,0) (C, 4, 0)

(A, 10, 0) (t, 0, 9)

5, 4

(F, 1, 0)

 2, 2

4,3

(E, 1, 0)

6, 5

2, 2

2, 1

1, 1

1,1
1, 1

2

2, 2

1, 1

2, 2 1, 1

2, 1

G S

D

B C

A
 t

(5, 4, 1/5)

F

(2, 2, 3/5)

(4, 3, 1/4)

E

(6, 5, 1/6)

(2, 2, 1/2)

(2, 1, 1/2)

(1, 1, 2/3)

(1, 1, 2/3)

(1, 1, 2/3)

2

(2, 2, 1/2)

(1, 1, 3/4)

(2, 1, 1/2) (1, 1, 3/4)

(2, 1, 1/2)

http://www.ijesrt.com/

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [552]

In the path S - B – C - G – t, the expression can be written as

x
x

x 833.0
6

5
 , 125.0*833.0

3

1
*

2

1
*

4

3
*

6

5

6

5
x

xx


In F2, The gain function of the S – A – E - t can be expressed

y
y

y 8.0
5

4
 , 125.0*8.0

2

1
*

4

1
*

5

4

5

4
y

yy


In the path S – A – D - t, the expression can be written as

 ,8.0
5

4
y

y
y 

125.0*8.0
4

1
*

2

1
*

5

4

5

4
y

yy


In the path S – A – F - t, the expression can be written as

,8.0
5

4
y

y
y 

25.0*8.0
2

1
*

2

1
*

5

4

5

4
y

yy


Maximum out flow = Sum of the gain function of x + Sum of the gain function of y.

Iteration 1:

When x = 1, Augment flow along (S, B, t)

The gain function x
x

833.0
6

5


 0.833x * 0.4 = 0.332

Augment flow along (S, B, C, t)

 0.833x * 0.5 = 0.4166

Augment flow along (S, B, C, G, t)

 0.833x * 0.125 = 0.1041

When y = 1, Augment flow along (S, A, E, t)

The gain function y
y

8.0
5

4


 0.8y * 0.125 = 0.1

Augment flow along (S, A, D, t)

 0.8y * 0.125 = 0.1

Augment flow along (S, A, F, t)

 0.8y * 0.25 = 0.2

Maximum out flow = 0.332 + 0.4166 + 0.1041 + 0.1 + 0.1+ 0.2 = 1.2539.

Iteration 2:

When x = 2, Augment flow along (S, B, t)

The gain function 666.12*833.0833.0
6

5
 x

x

 1.6666x * 0.4 = 0.6666

Augment flow along (S, B, C, t)

 1.6666x * 0.5 = 0.8333

Augment flow along (S, B, C, G, t)

 1.6666x * 0.125 = 0.2083

When y = 2, Augment flow along (S, A, E, t)

The gain function 6.12*8.08.0
5

4
 y

y

 1.6y * 0.125 = 0.2

Augment flow along (S, A, D, t)

http://www.ijesrt.com/

[Kinsley*, 5(2): February, 2016] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [553]

 1.6y * 0.125 = 0.2

Augment flow along (S, A, F, t)

 1.6y * 0.25 = 0.4

Maximum out flow = 0.6666 + 0.8333 + 0.2083 + 0.2 + 0.2 + 0.4 = 2.5082

By iteration 3, Maximum out flow = 3.7619.

Proceeding like this, we will increase the value of x and y, up to x = 6 and y = 5, since the flow value cannot exceed

the capacity value.

Result:

Maximum in flow = 9, Maximum out flow = 7.1247.

The algorithm stops in a finite number of steps with a maximum flow and we can estimate the number of steps used.

There are several facts to be checked. First, we check that the algorithm maintains both a valid feasible pre flow and

a valid distance labeling at each stage. If there are n nodes, then the algorithm takes at most 2n2 relabel steps and at

most 3n3 pushes. Also we know that the algorithm doesn’t stop while there is an active node. We can show that if a

feasible flow F has a distance labeling the F is a maximum flow. It ensures that when the algorithm does stop it has

determined a maximum flow.

APPLICATIONS
In traditional networks, there is an implicit assumption that flow is conserved on every arc. Many practical applications

violate this conservation assumption. The gain factors can represent physical transformations of one commodity into

a lesser or greater amount of the same commodity. Some examples include: spoilage, theft, evaporation, taxes,

seepage, deterioration, interest, or breeding. The gain factors can also model the transformation of one commodity

into a different commodity. Some examples include: converting raw materials into finished goods, currency

conversion, and machine scheduling. We explain the latter two examples next.

Currency Conversion

We use the currency conversion problem as an example of the types of problems that can be modeled using generalized

flows. Later, we will use these problems to gain intuition. In the currency conversion problem, the goal is to take

advantage of discrepancies in currency conversion rates. Given certain amount of one currency, say 1000 U.S dollars,

the goal is to convert it into the maximum amount of another currency, say French Francs, through a sequence of

currency conversions. We assume that limited amounts of currency can be treated without affecting the exchange

rates.

Scheduling unrelated parallel machines

As a second example, we consider the problem of scheduling N jobs to run on M unrelated machines. The goal is to

schedule all of the jobs by a pre specified time T. Each job must be assigned to exactly one machine. Each machine

can process any of the jobs, but at most one job at a time. Machine i requires a pre specified amount of time P i j to

process job j.

REFERENCES
[1] J. A. Bandy and U. S. R. Murthy, Graph theory with applications, Elsevier Science Publishing co., Inc., U.

S. A. (1976).

[2] R. K. Abuja, T. L. Magnanti, J. B. Ohlin, Network Flow, Prentice Hall, Englewood Cliffs, N. J. (1993).

[3] F. Glover, J.Hultz, D. Klingman, and J. Stutz. Generalized networks: A fundamental computer based

planning tool. Management Science, 24:1209-1220, (1978).

[4] A. V. Goldberg, R. E. Trajan, A New Approach to the Maximum Flow Problem, J. ACM 35 (1988) 921-940.

[5] H. S. Wolf, Algorithms and Complexity, Prentice Hall International, Inc., U. S. A. (1986).

http://www.ijesrt.com/

